Technical Specifications (In-Cash Procurement)

Technical Summary for CODAC Core System User Support Framework Contract Tender
This Technical Summary covers the supply of user support services for the CODAC Core System software distribution.
Table of Contents

1 BACKGROUND AND OBJECTIVE ...2
2 REQUIRED EXPERIENCE ...2
3 CODAC CORE SYSTEM ..3
4 SCOPE OF WORK ...4
5 QUALITY ASSURANCE REQUIREMENTS ...4
6 CONTRACT BASIS AND EXECUTION ...5
7 TENDER TIMETABLE ..5
8 CANDIDATURE ..5
9 REFERENCE ...6
1 Background and Objective
The Controls Division (CD) of the ITER Organization (IO) provides and manages CODAC Core System (CCS), the software platform used for CODAC (Controls, Data Acquisition and Communication) of the ITER machine. The current framework contracts for CODAC Core System Engineering Services were established in 2016 and will terminate in March 2021.

The objective of this Call for Tender is to select qualified companies / consortia with extensive experience in the required fields of work, proven track records in the implementation, exploitation and maintenance of CODAC Core System, and to award the Framework Contract that will supply the user support needs through the construction and commissioning phases of the ITER project for the period of 2021-2026.

The Framework Contract shall be implemented by the means of awarded Task Orders in order to execute the specific services.

2 Required Experience
The candidates shall have demonstrated capabilities and experience through various projects in the fields of user support (helpdesk), quality control, training (hands-on workshops) and maintenance of instruction videos and documentation.

The specific experience and qualities sought by IO include:

- Linux operating system usage, including tools for diagnosing and resolving abnormal behaviour in user code as well as in the system processes and in system configuration;
- Software development in a Linux environment using C, C++, Java programming languages;
- Software quality control: review of test procedures, execution of test procedures, review and production of technical documentation for software products, code reviews;
- Development of software in an EPICS environment for a control process;
- First line support for software developers;
- Capability to mobilise and manage centralised, on-site resources, and also to establish and manage off-site services for remote working;
- Ability to respond rapidly to changing resource requirements, to accommodate peak demands, and to provide specific expertise in the control system design and engineering field;
- Preparation and delivery of training courses and workshops for actors in the software engineering process;
- Development of time-critical and mission-critical software for a process having similar requirements as the ITER project;
- Development of applications for Siemens S7 PLCs;
- Usage of tools for operations such as tools for building graphical user interfaces for operators or alarm systems;
- Usage of the CODAC Core System tools and components;
- Application of the CODAC QA process (or a similar process) for software engineering tasks (specifications, design, code, documentation and tests).

The working language of ITER is English, and a fluent professional level is required (spoken and written) by all staff working under the Framework Contract and Task Orders.
3 CODAC Core System

The ITER Instrumentation and Control (I&C) System is the term encompassing all hardware and software required to operate the ITER machine. The ITER I&C System has two levels of hierarchy; the Central I&C Systems and the Plant Systems I&C, and three segregated vertical tiers; conventional control (CODAC), machine protection (interlocks) and safety. The Central I&C Systems are “in-fund”, i.e. procured by the ITER Organization (IO). The Plant Systems I&C are “in-kind”, i.e. procured by the seven ITER Domestic Agencies (DAs). There are 171 Plant Systems I&C with associated sensors and actuators.

The primary goal of the ITER I&C system is to provide the fully integrated control of the ITER machine. Standardization of Plant System I&C is a pre-requisite. Mandatory requirements and recommendations for the Plant System I&C development lifecycle and component selections are documented in the Plant Control Design Handbook (PCDH) and satellite documents (publicly available at https://www.iter.org/mach/codac/PlantControlHandbook). To complement and enforce the standards, the IO has developed a software framework called CODAC Core System. This framework is used to interface and support the development of every ITER plant system.

The selected technologies are Siemens S7 PLC slow controllers using Step7 and TIA Portal software, PCIe based fast controllers with PXIe and uTCA I/O crates, RedHat Linux, C/C++, Java, Python, open source software (Experimental Physics and Industrial Control System – EPICS, Control System Studio, etc.).

Figure 1 illustrates the physical architecture of the integrated ITER control system. A plant system I&C is a unit that interfaces to CODAC and includes a set of tightly coupled controllers, with one dedicated Plant System Host (PSH) implementing a set of plant-specific...
and generic (common) functions. A control group, or subsystem, is an assembly of plant system I&Cs and central coordination.

Plant system software delivered by third parties (users) contains signal input/output configuration, possible device drivers for COTS intelligent devices, controller applications (process control) executing on slow and/or fast controllers, interface configuration to central system, plant system specific HMI operator screens and configuration of central services such as archiving and alarm definitions.

This means the main users of the CODAC Core System distribution are colleagues from IO-CT and the IO-DAs and their contractors, who are in charge of the design, development and delivery of I&C for the ITER plant systems.

4 Scope of Work

The scope of the services requested covers the user support of the CODAC Core System distribution.

- **First line user support by email**
 The user support service operates during the IO-CT working hours. It includes expert level guidance and troubleshooting for addressing the questions and issues arising from the installation, configuration and use of CODAC Core System.

- **Diagnostics of issues reported by users**
 This includes reproducing abnormal behaviour and providing input for corrective actions, reporting problems to the software component owners and participating in the change management process as the interface with the end users.

- **Quality control of new CCS releases**
 Quality control services for each new version of CODAC Core System before its official release, such as the execution of integrated tests or the verification of the component tests, in particular for regression aspects.

- **Training tasks at hands-on workshops**
 The IO is organizing regular hands-on workshops for users at the ITER headquarters, with 10-15 participants. In addition, workshops may be organized at DAs or supplier’s premises on request from a DA.

- **Maintenance and development of training material for hands-on workshops**
 The training material used in the mentioned hand-on training needs to be updated according to the evolutions introduced in each CODAC Core System version. Also, additional training may be tailored on user request for additional topics, e.g. specializing in slow controller or fast controller development.

- **Maintenance and development of on-line video training sessions**
 The user training service also includes providing on-line self-learning services by means of recorded presentation and demonstration videos that need to be extended and updated according to the evolution of the software and of the users’ needs.

- **Improvement of user documentation**
 Existing user documentation has to be improved and additional documentation developed where required.

5 Quality Assurance Requirements

As a Nuclear Operator, IO requires that for the entire duration of the Framework Contract, Contractors shall hold, and maintain, as a mandatory requirement, a valid ISO 9001 (or an equivalent QA program approved by the IO). Failure to do this may lead to a potential termination of such contract.
The missions and tasks executed under this Framework Contract shall be carried out in compliance with the applicable IO Quality Requirements.

6 Contract Basis and Execution

The CODAC Core System User Support will be procured via a Framework Contract. Following contract award, Task Orders will be issued for the implementation of the services. All Task Orders to be executed under this contract are on a deliverable basis.

In the Technical Specification at tendering stage, a catalogue of services will be defined for the Framework Contract. The services specified in Task Orders will refer to those in the service catalogue with respect to scope and cost, and with clarifications on specific schedule and deliverables in the Task Order.

The ITER Organization will award the Framework Contract for a total period of 5 years. The initial award shall be for a firm period of 4 years, and an optional period of one year.

It is envisaged that the first Task Order will commence in March/April 2021.

The release of the option is correlated to performance requirements that will be indicated in the Technical Specification at tendering stage. The option may or may not be released at the IO’s sole discretion.

7 Tender Timetable

The tentative timetable for setting up the contract is as follows:

- Call for nomination sent: March 2020
- Pre-Qualification launch: May 2020
- Call for Tender launch: September 2020
- Award of the Contract: December 2020
- First Task Order: March 2021

8 Candidature

Participation is open to all legal entities established in an ITER Member State, which is:

- European Union including Switzerland (EURATOM Members),
- Republic of India,
- Japan,
- People’s Republic of China,
- Republic of Korea,
- Russian Federation, or
- United States of America.

On 31 January 2020, the UK left the EU and EURATOM with a transition period from 1st February to 31 December 2020 to be used to determine the conditions of their future relationship. EURATOM is the ITER Member and the withdrawal of the UK from EURATOM leads to the fact that UK is not anymore party to the ITER project.

Until the 31 December 2020, current end date of the transition period, UK entities retain the right to participate in IO procurement procedures.

After the end of the transition period, when the EURATOM Treaty ceases to apply to and in the UK, any UK entities bidding as a prime contractor or consortium partner will be rejected from the IO procurement procedures. UK entities will no longer be recognised as entities of an
ITER Member and will no longer have the right to participate in IO procurement procedures, unless the UK has entered into an agreement with EURATOM. Where UK entities can demonstrate a unique and specific competence in a certain field the IO, with approval of the ITER Council, may also allow them to participate in a procurement procedure.

Participation is open to all legal persons participating either individually or in a grouping (consortium). All legal persons including all consortium members should be established in an ITER Member State. A legal person cannot participate individually or as a consortium partner in more than one application or tender. A consortium may be a permanent, legally established grouping or a grouping that has been constituted informally for a specific tender procedure. All members of a consortium (i.e. the leader and all other members) are jointly and severally liable to the ITER Organization. The consortium cannot be modified later without the approval of the ITER Organization.

In the event of a consortium, a draft of the Consortium Agreement, or letter of intent and Power of Attorney signed by all the consortium members shall be submitted together with the tender.

Legal entities belonging to the same legal grouping are allowed to participate separately if they are able to demonstrate independent technical and financial capacities. Bidders (individual or consortium) must comply with the selection criteria. IO reserves the right to disregard duplicated references and may exclude such legal entities from the tender procedure.

9 Reference

Further information on the ITER Organization procurement can be found at: http://www.iter.org/org/team/adm/proc/overview.