Technical Specifications (In-Cash Procurement)

CFE - Mechanical engineering support for DMS and diagnostics integration in Equatorial Ports #08 and #17

This technical specification is to perform mechanical integration engineering tasks mainly induced by DMS impact on Equatorial Port (EP) #08 and EP#17. The purpose is to support the development of EP #08 and EP#17 up to FDR and PDR levels respectively, by fulfilling the tasks below:

• To support DMS and diagnostic tenants mechanical integration in EP#8 and #17;
• To propose and develop mechanical solutions of the port systems appropriate for DMS and diagnostics integration;
• To help in ...
Table of Contents

1 PURPOSE ...2
2 SCOPE ...2
3 DEFINITIONS ...2
4 REFERENCES ..2
5 ESTIMATED DURATION ..3
6 WORK DESCRIPTION ..3
 6.1 Introduction ..3
 6.2 Mechanical integration ..4
 6.3 Specific tasks ..5
 6.3.1 Integration of TSM system ..5
 6.3.2 Integration of DMS ...6
 6.4 Engineering documentation ..6
7 RESPONSIBILITIES ...6
 7.1 Contractor’s obligations ...6
 7.2 Obligations of the ITER Organization ...7
8 LIST OF DELIVERABLES AND DUE DATES ..7
9 ACCEPTANCE CRITERIA ...8
10 SPECIFIC REQUIREMENTS AND CONDITIONS ...9
11 WORK MONITORING / MEETING SCHEDULE ..9
12 DELIVERY TIME BREAKDOWN ..10
13 QUALITY ASSURANCE (QA) REQUIREMENTS ..10
14 SAFETY REQUIREMENTS ...10
1 Purpose

This technical specification is to perform mechanical integration engineering tasks mainly induced by DMS impact on Equatorial Port (EP) #08 and EP#17. The purpose is to support the development of EP #08 and EP#17 up to FDR and PDR levels respectively, by fulfilling the tasks below:

- To support DMS and diagnostic tenants mechanical integration in EP#8 and #17;
- To propose and develop mechanical solutions of the port systems appropriate for DMS and diagnostics integration;
- To help in preparation of the CAD models, design reviews technical documentation and presentations.

2 Scope

This document concerns port integration and mechanical design activities performed in EP#08 and EP#17 Port Plugs, closure plate, Interspace and Port Cells areas.

3 Definitions

For a complete list of ITER abbreviations see: [ITER Abbreviations (ITER_D_2MU6W5)].

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARA</td>
<td>As Low As Reasonably Achievable</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>HoF</td>
<td>Human Organizational Factor</td>
</tr>
<tr>
<td>HFE</td>
<td>Human Factors and Ergonomics</td>
</tr>
<tr>
<td>DET</td>
<td>Data Exchange Transfer</td>
</tr>
<tr>
<td>DFW</td>
<td>Diagnostic First Wall</td>
</tr>
<tr>
<td>DIR</td>
<td>Design Integration Review</td>
</tr>
<tr>
<td>DSM</td>
<td>Diagnostic Shielding Module</td>
</tr>
<tr>
<td>FDR</td>
<td>Final Design Review</td>
</tr>
<tr>
<td>EP</td>
<td>Equatorial port</td>
</tr>
<tr>
<td>FDR</td>
<td>Final Design Review</td>
</tr>
<tr>
<td>FP</td>
<td>First Plasma</td>
</tr>
<tr>
<td>HIRA</td>
<td>Hazard Identification and Risk Assessment</td>
</tr>
<tr>
<td>ORE</td>
<td>Occupational Radiation Exposure</td>
</tr>
<tr>
<td>PCSS</td>
<td>Port Cell Support Structure</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>PFPO-1</td>
<td>Pre-Fusion Plasma Operation 1</td>
</tr>
<tr>
<td>PP</td>
<td>Port Plug</td>
</tr>
<tr>
<td>ISS</td>
<td>Interspace Support Structure</td>
</tr>
<tr>
<td>SDDR</td>
<td>Shutdown Dose Rate</td>
</tr>
<tr>
<td>SIC</td>
<td>Structural Integrity Component</td>
</tr>
<tr>
<td>RO</td>
<td>Responsible Officer</td>
</tr>
<tr>
<td>PIA</td>
<td>Protection Important Activity</td>
</tr>
</tbody>
</table>

4 References

5 Estimated Duration

The overall duration of this work is 12 months.

6 Work description

Port integration engineering support comprises

- DMS and diagnostics mechanical integration in EP#8 and #17;
- development of mechanical solutions of the port systems appropriate for DMS and diagnostic tenants integration;
- re-integration of diagnostic systems caused by DMS development;
- preparation of technical documentation and presentations for design and integration reviews.

The scope of the work is limited by EP#08 and EP#17. It comprises Port Plug (PP) (Fig.1), closure plate (not shown), Interspace and Port Cell areas (Fig.2) of both ports.

![Figure 1. PDR level EP#08 Port Plug Assembly based on generic modular solution (DSMs with shielding trays on the right; DSMs w/o shielding trays on the left).](image)

6.1 Introduction

EP #08 is partially First Plasma (FP) system. The FP EP#08 configuration includes the Interspace Support Structure (ISS), Port Cell Support Structure (PCSS) and all necessary services (cables, gas, vacuum). In FP configuration, only two diagnostics tenant systems will be installed. After the FP operation EP#08 will be upgraded to Pre-Fusion Plasma Operation-1
(PFPO-1) configuration, which includes fully assembled and tested PP and fully assembled ISS and PCSS. This configuration is planned to remain until ITER decommissioning. More details on EP#08 system including list of tenants can be found in the respective Design Description Document, [1]. The second system, EP#17 is for PFPO-1; similar to EP#08, it is supposed to be operational until ITER decommissioning. Details on EP#17 are in [2].

Figure 2. PDR level EP#08 integrated PCSS (right side) and ISS (on the left).

6.2 Mechanical integration

The objective is to continuously support port integration and develop solutions appropriate for DMS, Glow Discharge Cleaning and diagnostic integration development. The list of main activities expected to be performed is

- Providing recommendations and following up adaptation of tenants systems appropriate to the integration;
- Development of PP elements and integration solutions necessary for tenants integration:
 - finding proper place for tenant systems and shielding trays and developing of the fixation elements appropriate for integration;
 - suggest routing and service integration solution using standard solutions (clamps) for modular DSM structure;
 - continuously support the interfaces up-to-date, especially the interface with DFW, LEVI, windows, tenants systems, etc.
 - delivery of the relevant CAD models;
- Development of the closure plate elements and integration solutions:
 - finding proper arrangement of the flanges appropriate for inspection and maintenance,
 - support the development of services (SVS, cables), their routing and their integration,
The integration of EP#08 and EP#17 shall comply with 55.Q8 and 55.QH requirements ([3], [4]), which includes defined requirements [5]. In order to give a view, some of general requirements (but not limited to) are listed below:

- The integrated port shall demonstrate structural integrity.
- The integration shall be acceptable to tenant systems.
- The integrated port and its systems shall meet RH requirements.
- The integrated port and its systems shall comply with inspection and maintenance requirements.
- The integrated port shall demonstrate ALARA neutron leakage.
- The integrated port shall demonstrate ALARA SDDR in the ISS and PCSS areas.
- The ports shall be integrated taking into account results of human organizational factor and ergonomics assessment.

6.3 Integration of TSM system.

Tokamak Structural Monitoring (55.GT TSM) to be integrated in the ports has recently appeared in EP#08 and EP#17 (see [6]). In order to incorporate the system in the ports several tasks have to be made:

- closure plate and Port Plug Structure (PPS) integration shall be assessed and conclusion about feasibility of the TSM integration shall be made. Integration of the closure plate TSM component(s) shall not interfere with DMS vacuum extension, namely the area required for vacuum extension maintenance shall be clearly defined and avoided for any interference;
- closure plate and PPS design shall be updated accordingly and CAD models delivered for the analysis (structural, maintenance, HOF);
- routing of optical fibers for TSM shall be discussed with TSM RO. This input shall be considered for services integration in ISS and PCSS.

6.4 Integration of DMS

The Disruption Mitigation System (DMS) (PBS-18, 18.DM DMS) is a rapidly growing system at post-CDR development level. The most critical for integration area is vacuum extensions and the services (vacuum, gas, cryogenic). The work on vacuum extensions is ongoing with support of maintenance and ORE assessments, and HOF analysis, provided by PBS-55. DMS design is evolving and vacuum extensions integration is being changed respectively. Abovementioned reasons require to perform following tasks:

- DMS integration models in ISS shall be updated;
- DMS integration models in PCSS shall be updated;
- DMS integration in PP shall be updated;
- DMS services routing in ISS and PCSS areas, suggest integration solutions, discuss them with DMS and IO port integration ROs and produce CAD models accordingly;
- Following the recent outcome of vacuum extensions maintenance studies and ORE assessment made for EP#11 and ongoing for EP#08 and EP#17, suggest DMS vacuum extension design update feasible for integration and maintenance;
- DMS integration shall be put in line with recommendations from HOF studies (ongoing) in order to comply with ergonomics guidelines;
- When the results of DMS neutronics analysis is available (from PBS-18 either PBS-55), the integration shall be adopted accordingly (doglegs modification, adding/removal of shielding blocks, etc);
- Impact of DMS vacuum extension changing on diagnostics integration shall be assessed and re-integration solutions suggested to diagnostic systems;
- Develop integration options for diagnostics affected by DMS.

6.5 Engineering documentation

The engineering documentation expected to be prepared is below

- Development of the ISS and PCSS assembly plans;
- Providing Bill of Materials;
- Providing documents with description of the input for neutronic analysis;
- Providing FDR level update of the 55.Q8 DDD describing details of the port design and integration. The concerned Sections are 3.2.2, 3.2.4, 3.2.5, 4.2.3, 4.2.2, 8.1, 8.2 and 8.3;
- Participation in the design and integration reviews;
- Preparation of the presentation related to mechanical integration and assembly sequence;
- Assistance to IO Port Integration RO to coordinate tenants integration.

7 Responsibilities

7.1 Contractor’s obligations

The Contractor shall ensure that he complies with the provisions of the Framework Contract in particular with the following:
The Contractor shall guaranty that all input information provided to perform the task remain property of IO and shall not be used for any other activity than the one specified in this specification.

The Contractor shall be in charge of the training & coaching of all its resources.

The contractor shall provide an organization suitable to perform the work as describe in this specification;

The contractor shall work in accordance with the QA plan approved by IO;

The contractor shall perform the activities accordingly to this specification taking into account all relevant additional documents and IO processes into account (hand books, export control, intellectual properties, ...); The Contractor shall be responsible to produce and manage, using the ITER software platform, all the documents listed in chapter 11.

The Contractor shall provide to the IO representative full access to its work premises and related documentation, to permit to follow up the progress of the work.

Prior to the start of work on each activity, the Contractor shall review the input technical information provided to it by IO for completeness and consistency, and shall advise the IO representative of any deficiencies it may find. The contractor shall not be responsible for errors in the input technical information which could not be reasonably detected during such review; duration of this review will be agreed between Contractor and IO representative and will have no impact on the delivery schedule.

7.2 Obligations of the ITER Organization

The ITER Organization shall make available all data and information necessary to perform the activities specified in the present document.

- IO procedures required to achieve the activities according to ITER quality and safety rules;
- Information on diagnostic design and requirements for the development of the window assembly design.

The ITER Organization shall give the possibility to the contractor to review documents on the ITER documents database (IDM).

IO shall make available to the Contractor all technical data and documents which the Contractor requires to carry out its obligations pursuant to this specification in a timely manner. For delays of more than two weeks in making them available, the Contractor shall advise IO representative of the potential impact on the delivery of the Work Packages, to agree and define all the correction actions to take in place.

8 List of deliverables and due dates

<table>
<thead>
<tr>
<th>No</th>
<th>Target date (months)</th>
<th>Deliverable description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D08-1</td>
<td>T0+2</td>
<td>Update mechanical models of EP#08 ISS and PCSS considering recent input from DMS design. Discuss with IO RO and upload supporting description document in the IDM as per request. Implement in the EP#08 DSM recently developed common modular elements (bolted vertical plates, water cooling jumpers, thickness of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>D08-2</td>
<td>T0+4</td>
<td>Update mechanical models of EP#08 port plug and closure plate integrations considering recent input from DMS and diagnostic systems. Incorporate TSM in PPS design. Find a place for fibers routing in PP. Design fixation features for fibers in PP. Prepare presentation for EP#08 integration interface freezing meeting #1. Update EP#08 PP, closure plate, ISS and PCSS models considering latest DMS design. Prepare mechanical model of EP#08 for FDR level neutronics analysis. Discuss with neutronics expert at IO. Prepare DET.</td>
</tr>
<tr>
<td>D17-1</td>
<td>T0+6</td>
<td>Update mechanical models of EP#17 ISS and PCSS considering recent input from DMS and diagnostic systems. Discuss with IO RO and upload supporting description document in the IDM as per request. Implement in the EP#17 DSM recently developed common modular elements (bolted vertical plates, water cooling jumpers, thickness of the water boxes lids, etc). Assess possible impact on tenants integration, discuss it with tenants RO and agree it. Find a place at the EP#17 closure plate and incorporate means for TSM. Integrate TSM feedthrough at the closure plate. Prepare presentation for EP#17 DIR meeting.</td>
</tr>
<tr>
<td>D08-3</td>
<td>T0+8</td>
<td>Update mechanical models of EP#08 DSM integration considering recent input from tenant systems. Prepare port integration presentation for EP#08 DIR meeting. Provide written updated sections for EP#08 DDD considering latest port systems design. Prepare mechanical model of EP#08 for FDR level thermal, electromagnetic and structural analysis. Prepare DET. Update EP#08 design following the results of structural analysis. Prepare presentation for EP#08 integration interface freezing meeting #2.</td>
</tr>
<tr>
<td>D08-4</td>
<td>T0+12</td>
<td>Coordinate integration of DMS and tenant systems in the modular port infrastructure. Document minutes and actions in the IDM as appropriate. For the EP#08 FDR meeting, prepare presentation on PP, closure plate, ISS and PCSS integration. Provide EP#08 assembly plan. Update EP#08 models following the recommendations of the FDR panel. Prepare and follow up the CMAF for human access corridors in EP#08.</td>
</tr>
</tbody>
</table>
9 Acceptance Criteria

The reports submitted via IDM will be always reviewed by technical experts of PBS55 nominated by the IO-TRO and by other relevant IO experts where applicable. Revision can be delegated upon consideration of the respective nominees.

The memos submitted via IDM by the Contractor are for general information. No revision nor approval processes are required.

10 Specific requirements and conditions

The Contractor shall have and maintain the necessary equipment and licenses to run the software tools required to carry out the tasks and produce the deliverables in accordance with the tools adopted by the IO. The Contractor shall ensure that experts are adequately supported and equipped. It shall ensure that there is sufficient administrative, secretarial and interpreting provision to enable experts to concentrate on their primary responsibilities.

The official language of the ITER project is English. Therefore, all input and output documentation relevant to this Contract shall be in English. The Contractor shall ensure that all the professionals in charge of the Contract have an adequate knowledge of English, to allow easy communication and adequate drafting of technical documentation. This requirement also applies to the Contractor’s staff working at the ITER site or participating in meetings with the ITER Organization.

The work described here is a Protection Important Activity (PIA). As such, it must be independently reviewed by the supplier and records of the revision must be produced.

In addition, the following skills are necessary for the success of the activity:

- Ability to work with CATIA V5, AutoCAD 2D
- Experience in mechanical integration of sophisticated equipment and integration coordination activity
- Experience in nuclear engineering design (equipment to be maintained, maintenance tools, handling)
- Experience to integrate the system in the environment when HOF and ergonomics play an important role
- Experience in mechanical engineering
- Experience in Remote Handling/ maintenance
- Ability to produce technical documentation
- Experience in application of French Nuclear Safety regulations
- Experience in interface management
- Schematics definition
- Design organization.

Contractor’s personnel visiting the ITER site will be bound by the rules and regulations governing safety and security.

11 Work Monitoring / Meeting Schedule

The work will be started by a dedicated kick-off meeting (KOM) at ITER premises and managed by means of Progress Meetings. It is expected that Progress Meetings will be held biweekly at ITER premises.
The main purpose of the Progress Meetings is to allow the ITER Organization/Diagnostics Division and the Contractor Technical Responsible Officers to:

- Allow early detection and correction of issues that may cause delays;
- Review the completed and planned activities and assess the progress made;
- Permit fast and consensual resolution of unexpected problems;
- Clarify doubts and prevent misinterpretations of the specifications.

The ITER Organization and/or the Contractor may request additional meetings to address specific issues to be resolved.

The Contractor will work predominantly on IO site in order to accelerate the common understanding of the context and focus the effort towards the needed direction. The Contractor shall be present at ITER premises for the PDRs of EP#17 and FDR of EP#08.

12 Delivery time breakdown

T0 is the date of the kick-off meeting.

The DIR and PDR for the EP#17 are scheduled for Q4 2020.

The DIR and FDR for the EP#08 are planned for Q4 2020 and Q1 2021 respectively.

13 Quality Assurance (QA) requirements

The organisation conducting these activities should have an ITER approved QA Program or an ISO 9001 accredited quality system.

Prior to commencement of the task, a Quality Plan must be submitted for IO approval giving evidence of the above and describing the organisation for this task; the skill of workers involved in the study; any anticipated sub-contractors; and giving details of who will be the independent checker of the activities (see Error! Reference source not found.).

Documentation developed as the result of this task shall be retained by the performer of the task or the DA organization for a minimum of 5 years and then may be discarded at the direction of the IO.

The use of computer software to perform task activity such as analysis and/or modelling, etc shall be reviewed and approved by the IO prior to its use, it should fulfil IO document on Software Qualification Policy [11].

14 Safety requirements

ITER is a Nuclear Facility identified in France by the number-INB-174 (“Installation Nucléaire de Base”).

For Protection Important Components and in particular Safety Important Class components (SIC), the French Nuclear Regulation must be observed, in application of the Article 14 of the ITER Agreement.

In such case the Suppliers and Subcontractors must be informed that:

The Order 7th February 2012 applies to all the components important for the protection (PIC) and the activities important for the protection (PIA).

The compliance with the INB-order must be demonstrated in the chain of external contractors. In application of article II.2.5.4 of the Order 7th February 2012, contracted activities for supervision purposes are also subject to a supervision done by the Nuclear Operator.
For the Protection Important Components, structures and systems of the nuclear facility, and Protection Important Activities the contractor shall ensure that a specific management system is implemented for his own activities and for the activities done by any Supplier and Subcontractor following the requirements of the Order 7th February 2012 (ITER_D_7M2YKF).

Compliance with Defined requirements for PBS 55 - Diagnostics (NPEVB6 v2.0) or its flowed down requirements in SRD-55 (Diagnostics) from DOORS (28B39L v5.2) is mandatory.

This task is a PIA.

“The supplier must comply with the all requirements expressed in “Provisions for implementation of the generic safety requirements by the external actors/interveners” (ITER_D_SBSTBM)”.