ITER Torus & Cryostat CRYOPUMPS (OPE-0966)
PRELIMINARY CONTRACT SCOPE AND DESCRIPTION

For information only
No further use authorized
(information presented here may be subject to changes)
The Design of Torus Cryopump is driven by the fact that to sustain fusion, the plasma must be continuously pumped:

- Only a few % of the fuel is burned in the plasma and turns into He ashes.
- Divertor configuration allows exhaust of excess fuel, ashes and impurities.
- Continuous pumping and fueling are necessary to maintain core fuel density.

Pumps in the divertor ports pump the neutral gas containing fuel, impurities and helium ash.
System Scope

6 Torus Cryopumping Systems
- 1 Torus Cryopump
- Vacuum Instrumentation
- 1 Actuator Control System
- 1 Helium Inerting System
- 1 Control cubicle
- 4 Pneumatic enclosures
- Cabling

2 Cryostat Cryopumping Systems
- 1 Cryostat Cryopump
- Vacuum Instrumentation
- 1 Actuator Control System
- 1 Control cubicle
- 2 Pneumatic enclosures
- Cabling

Final Design level

6x

2x
Contract Scope

F4E preliminary contract scope and description

- 6 Torus Cryopumping Systems
 - 1 Torus Cryopump
 - Vacuum Instrumentation
 - 1 Actuator Control System
 - 1 Helium Inerting System
 - 1 Control cubicle
 - 4 Pneumatic enclosures
 - Cabling

- TCCS

- 2 Cryostat Cryopumping Systems
 - 1 Cryostat Cryopump
 - Vacuum Instrumentation
 - 1 Actuator Control System
 - 1 Control cubicle
 - 2 Pneumatic enclosures
 - Cabling

Final Design Level
Final Design Level

Supplier scope

- Manufacturing Design + Manufacturing Readiness Review
- Procurement of raw material and off-the-shelf components for eight cryopumps and their related systems
- Machining, manufacturing
- Assembly of all subcomponents into eight cryopumps + peripheral systems
- Factory Acceptance Tests
- Packing and shipping to ITER site

Out of scope

- Final Design
- Site Acceptance Tests
- Installation, testing, commissioning
- Manufacture of Johnston Couplings
- Control/conditioning of instrumentation
Overall scope

- 6 Torus Cryopumping Systems
- 2 Cryostat Cryopumping Systems
The cryopumps (Torus and Cryostat)

- Charcoal coated cryopanels
- Pump casing
- Johnston couplings
- Pump plug
- Pneumatic actuator
- Valve head
- Double bellows assembly
- Thermal radiation shield
- Valve stem
- Valve shaft
The cryopumps (Torus and Cryostat)

- Cryopanels
- Thermal radiation shield
- Pump casing
- Valve assembly
- Other components integrated in the cryopumps:
 - Temperature sensors + cabling
 - 2 electrical feedthroughs
 - Valve double bellows
 - Pneumatic actuator
 - 7 DN65 + 1 DN150 flanges
 - 4 Johnston Couplings
 - Seals, bolts, nuts
 - Transport and storage frame
Main components:
- Pressure gauges (Pirani + cold cathode + membrane)
- Pressure switches (membrane)
- Residual Gas Analyzer
- Connecting pipes + supports + flanges
- Double containment feature
- Valves
- Cabling + connectors
- Conditioning electronics

Note: still to be decided if instruments will be free-issued to the contractor and only installation will be part of the scope.
Scope: Actuator control system

Main components:
- Cubicle/enclosure
- Valves
- PIC valves
- Pneumatic connections
Main components:
- 2 gas Helium tanks
- Valves
- SIC valves
- Burst disks
- Injection line
Technical requirements

Some of the technologies included in the scope:
- Hydroforming
- Charcoal coating
- Electropolishing
- Hard chrome plating
- Copper electrodeposition of temperature sensors
- Complex pipe fitting
- Blackening
- Electron beam welding

Some of the materials/components included in the scope:
- Mainly 1.4307 austenitic stainless steel
- Some of the components with limitation on Co, Ta, Nb
- Some of the components are ESR (valve stem)
- Instruments based on off-the-shelf / catalogue components
- Single items based on off-the-shelf components (seals, washers)
Special technologies

Hydroforming
Charcoal coating

Vacuum and Tritium compatible, radiation hard ceramic glue

Charcoal adhered in the glue
Tendering phase

Invitation to participate:
Nov-Dec 2018

Selection of candidates based on eligibility/exclusion and selection criteria

Launch invitation to tender

Submission of Requests to Participate

Submission of Preliminary tenders

Evaluation of tenders

Negotiation phase – possible intermediate tender submissions

Contract signed:
Before November 2019
Contract schedule outline

Contract signed: November 2019

Manufacturing design

Manufacturing Readiness Review (Hold Point)

Manufacturing & testing

Delivery of 1st cryopump: March 2022

Delivery of last cryopump: November 2022
Thank you for your attention

Follow us on:

www.f4e.europa.eu
www.twitter.com/fusionforenergy
www.youtube.com/fusionforenergy