

Cassette Toroidal Mover (DAT CTM)

Marc Tineo Remote Handling Engineer

November 4, 2024

Cassette Toroidal Mover (CTM)

Cassette Toroidal Mover (CTM)

- Introduction
- Functions
- Design drivers and constrains
- Main subsystems:
 - Drive Units: Toroidal movement
 - Lift Units: Cassette lifting and fine positioning
 - Hydraulic system
 - Cable Guide: services connection for CTM

Introduction: two CTMs working from the same port

DAT CTMs

- Two CTMs inserted through RH port
- CTMs supported and running on toroidal rails
- Two CTMs will be present simultaneously on a 120° sector
- Each CTM will be working on a 60° sector
- The trajectories of both CTMs are overlapping at port area

DAT CTM: Functions (1/2)

The DAT CTM is a simplified version of the Nuclear CTM, with limited functions:

- 1. Cassette Lifting & positioning function: Equipped with two small XYZ cartesian positioners to lift the cassette through two hooks (Lift Units)
- 2. Cassette Transport function: Is a mover running toroidally along circular rails (Drive Units)

DAT CTM functions (2/2): DAT compared to Nuclear CTM

Nuclear CTM (future machine)

- Radiation hardened machine
- Radhard components (electronics, cameras, etc.)
- Functions: multiple complex functions
- Manipulator onboard
- Several active tools and umbilicals
- Operation: fully remote from control room

DAT CTM for 1st Assembly (current project)

- Functions: only lifting and transporting cassettes
- No radiation hardened machine
- Mainly Industrial components
- No manipulator onboard, no tools, no umbilicals
- Operation: remote + local control (pendant)

DAT CTM main constrains (1/3)

External volume strictly limited as a cassette

- CTM design uses the maximum volume available compatible with the insertion through the port duct.
- Not possible increasing external dimensions

DAT CTM main constrains (2/3)

Offset Lifting Function

- The cassette is lifted cantilevered at one side of the CTM
- The lifting stroke is short, only required 7mm clearance from cassette to rail for transport

FUSION

FRGY

DAT CTM main constrains (3/3)

Materials allowed and contamination avoidance

- The Vacuum Vessel is a clean area with high cleaning requirements
- Materials allowed: mainly stainless steel, no carbon steel, in general no plastics, no rubber
- High requirements to avoid spreading contamination:
 - CTM equipped with external covers to prevent spreading contamination from CTM to Vacuum Vessel
 - No paints, no stickers, smooth external surface to allow careful cleaning
 - The DAT CTM cannot use oil
 - Hydraulics based on water instead of oil
 - Grease requires double confinement

DAT CTM main subsystems

Each individual subsystem is a compact unit, replaceable independently of the other ones

Toroidal Movement (1/7): Installation on rails

CTM installation on Vacuum Vessel rails

• The CTM is inserted by the CMM (1), released on rails (2), and secured to the rails thanks to clamps (3).

Toroidal Movement (2/7): guidance by rollers & rails

Toroidal Movement (3/7): guidance by rollers & rails

- Travel along toroidal direction: supported and guided to toroidal rails (IB and OB)
- Guidance based on vertical and radial rollers
- Driven by motorized vertical rollers

Toroidal Movement (4/7): Drive Units

FUSION FOR ENERGY

Main requirements for Drive Unit

- Vertical loads: 12.5ton approx.
 - Cassette weight =8.5 ton approx.
 - CTM weight = 4ton approx.
- Travel speed:
 - 0-80mm/s unloaded
 - 0-30mm/s loaded
- Positioning accuracy: ±2mm

Toroidal Movement (5/7): Drive Units

Inboard Drive Unit

Outboard Drive Unit

Toroidal Movement (6/7): Drive Units

Inboard Drive Unit

- Shape constrained by other systems around •
- Upper clamp driven by hydraulic cylinders •

DAT CTM - Cassette Toroidal Mover

Toroidal Movement (7/7): Drive Units

Upper Clamp to secure CTM to rail (hydraulic cylinders)

Outboard Drive Unit

- Different configuration compared to IB Drive Unit
- Two symmetrical drive trains and twin motorized rollers

Upper Bogie Torque Upper Radial limiter Rollers (x2) Decoupling clutch Motorized Vertical Cyclo Rollers (x2) . Gearbox Lower Radial Drive train (x2) Rollers (x2) AC motor Lower Bogie

Components for each drive train:

Cassette lifting: Lift Units (1/2)

Lift Units are cartesian XYZ positioners with short movements of the hook

- Two independent Lift Units
- Load: 5 tons approx. load per Lift Unit
- 3 cartesian movements: radial, vertical and toroidal (<100mm each)
- Functions:
 - Lifting the cassette from rails
 - Supporting the cassette during transport along toroidal direction
 - Adjusting the cassette position with accuracy

Cassette lifting: Lift Units (2/2)

Main solutions (Inboard Lift Unit shown):

- Mechanical guidance: linear guides
- Actuators: Hydraulic (Water based to prevent contamination)
- Hydraulic connection: pipes / flexible hoses
- Position sensors: LVDTs

CTM Hydraulic System and Power Unit (HPU) (1/2)

Key requirements

- Water hydraulics to avoid contaminating VV
- 10 hydraulic-actuated mechanisms
- Slow speed for all movements, small flow
- Each mechanism recoverable in case of hydraulic failure

Water hydraulic components

- Hydraulic circuit providing intrinsic redundancy for the application
- Digital valves already developed and tested for water hydraulics
- Hydraulic system prototype currently under design, to be built and tested during 2025

Main Valves

Space reserved for HPU and main valves

DAT CTM - Cassette Toroidal Mover

CTM Hydraulic System and Power Unit (HPU) (2/2)

CTM services connection: Cable Guide

Key requirements

- Providing services to CTMs while moving independently inside the Vacuum Vessel
- Services: signal, power, camera signals

END

DAT CTM - Cassette Toroidal Mover