
F4E Technology Development Program (TDP) Pilots Info Day

Javier Serrano – Fusion Technologies and Engineering Department

17th September 2024

CONTENT

INTRO TDP (WHY)

TDP CONCEPT & GOALS (WHAT)

WAY FORWARD (HOW, WHEN)

INTRO TDP (WHY)

What is the need for a F4E Technology Development Program?

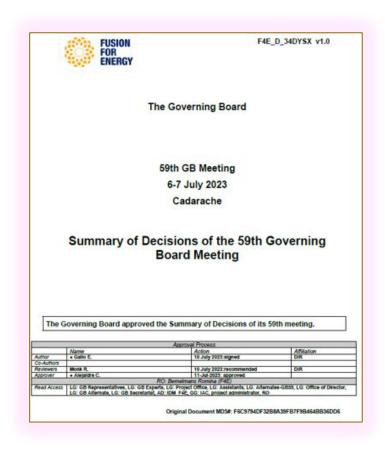
Formal answer i: Governing Board Mandate

Formal answer ii: F4E DIR Vision

"We pave the way for a transition from the research to the industrial sector, and the creation of a competitive European industrial fusion sector"

Other directions: European Union Focus on Innovation

"EU benchmarking shows that Europe is exploiting only half of the potential power of innovation procurement, in particular in R&D procurement". 1

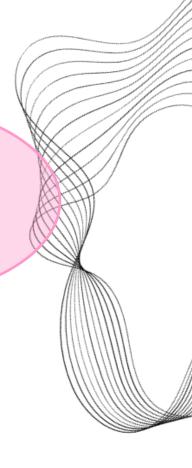

"Public buyers, acting as lead customer, will need to boost innovation procurement and help businesses to develop innovative solutions in key industrial ecosystems". 1

"The fifth freedom" to enhance research, innovation and education. The fifth freedom would entail embedding research and innovation drivers at the core of the Single Market" ².

^{1.} Guidance on Innovation Procurement. EC. C(2021) 4320 final; 2. Much more than a Market. Enrico Letta. April 2024

INTRO TDP (WHY)

Procurement Process


1) Strategic procurement

2) SME-targeted recommendations

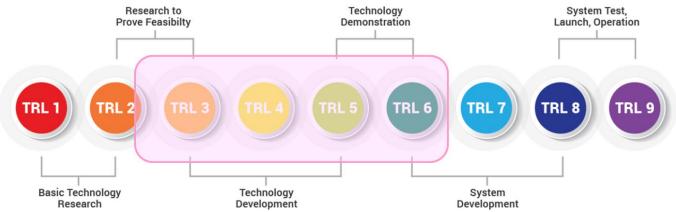
Early involvement of EU Industry

3) Implementation of a Technology Development Program (TDP)

4) Better articulation of F4E-EUROfusion collaboration & enhanced involvement of European Fusion Labs (EFLs) expertise

TDP CONCEPT & GOALS (WHAT)

Support R&D activities on advanced technological capabilities.


Explore the feasibility and suitability of cutting-edge technologies.

Ease availability of fusion key enabling technologies (right technologies at the right time!)

Promote strategical technology actions for future-proofing the competitiveness of European industry.

Address critical technologies gaps for European fusion technology non-

dependence

TDP CONCEPT & GOALS (WHAT)

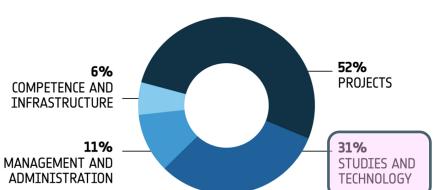
- R&D activities fully financed by F4E 100%
- In support of a competitive European Fusion Supply Chain
- Ownership by the company of IP rights generated
- Work based on Best Effort approach
- Simplified Technical Specifications (functional requirements)
- Ad hoc simplified Specific Contract terms
- Ad hoc simplified Tender Provisions
- Quick Procurement Lead Times

TDP CONCEPT & GOALS (WHAT)

ESA Technology Development Program as the Reference Model

TEC PEOPLE

FROM LAB EXPERIMENTS TO INDUSTRIAL PROTOTYPES, FROM DAZZLING IDEAS TO RELIABLE INSTRUMENTS, IMAGINATION AND DEDICATION DRIVE OUR INNOVATION 1000 PEOPLE


Total ESA Staff 2700

€1.1B€ OVERALL EUROPEAN SPACE TECHNOLOGY R&D BUDGET IN 2022

€651M€ ESA'S SPACE TECHNOLOGY R&D BUDGET IN 2022

WORKFORCE FULLY DEPLOYED ON AGENCY **PRIORITIES**

Q12024

Q2 2024

Q3 2024

Q4 2024

- ✓ FUSION TECHNOLOGY MAPPING
- ✓ GOVERNANCE SET UP
- ✓ INITIAL ROUND STAKEHOLDERS
- ✓ RESOURCES (I)

- ✓ CRITICAL TECHNOLOGIES
- ✓ IMPLEMENTATION TOOLS (I)
- ✓ STAKEHOLDERS BOARD SET UP
- ✓ RESOURCES (II)

- ✓ TDP PROGRAMME MANAGEMENT PLAN
- ✓ IMPLEMENTATION TOOLS (II)
- ✓ WP, SPD
- ✓ CALL FOR PILOTS PROPOSALS PREPARATION

→2024 INITIAL

SETTING UP OF TDP

+ CfP FOR TWO TDP

PILOT ACTIONS

2025 Full setting up of TDP

CfP for "n" TDP actions (10 M€ BUDGET) following systematic proposal and selection process Pilot on European Fusion Technology Domains Harmonization & Strategy Workshops

2026+ Steady State, about 30M€ yearly for TDP expenditure

DIMENSION OF PROGRAMME LINKED TO © RESOURCES

Year 2024: Launch of two TDP Pilot actions, via Pre-Commercial procurement-based tool

<u>Subject</u>: Characterization of Gradient joints on Tungsten/CuCrZr materials

<u>Scope</u>: R&D effort to specify, manufacture and test a series of Tungsten gradient joints samples for a systematic material properties characterization.

Cost Estimate: ≈ 0,9 M€, based on assuming three competing companies at stage one, two for later stages of testing and engineering analysis.

Duration: 15 months

TDP Pilot Action 2:

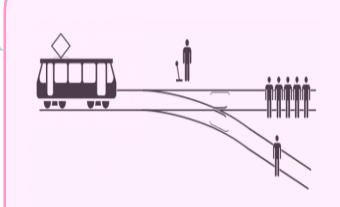
<u>Scope</u>: R&D effort to develop the design of a real time personal monitor for Tritium vapor. Prototyping and testing of such a design. Redesign and further prototyping and testing as needed.

<u>Cost Estimate</u>: ≈ 0,7 M€, based on assuming two competing companies throughout all stages, including prototyping and testing.

Duration: 24 months

- COMPETENCE DOMAIN
- KEY ENABLING TECHNOLOGY
- FUSION CRITICALITY
- STRATEGIC PROCUREMENT
- NEED HARMONIZATION
- CURRENT TRL
- CURRENT SRL
- STATE OF THE ART / TECH STATUS / GAPS
- COMPETITION
- EUROPEAN INDUSTRY COMPETENCES
- STRATEGIC INTEREST / NON-DEPENDENCE
- SPIN OFF PROBABILITY
- ITER/DEMO SCOPE RELEVANT
- ITER OPPORTUNITY
- RELEVANT FOR FPP
- PRIORITY

COMPETENCE DOMAIN	KEY ENABLING TECHNOLOGY
IIGH TECH MATERIALS	
	FUSION MATERIALS CHARACTERIZATION
	Novel fusion materials
	Advanced materials (e.g., SiC composites) with high heat resistance (up to 1000°C) and low activation
	Porous SiC with tailored porosity production
	Fusion structural materials (e.g. reduced activation steels)
	Creep resistance materials under influence of irradiation (embrittlement and swelling) and high temperature
	Reduced-activation ferritic/martensitic steels (RAFM): EUROFER, F82H
	High-strength steels e.g., Nitronic 50/XM-19 characterization and testing
	Oxide Dispersion Strengthened RAFM steel (ODS RAFMS)
	Rare earth metals for allowys properties improvement
	First wall materials
	Self-passivating Metal Alloys with Reduced Thermo-oxidation (SMART)
	Cu / CuCrZr alloys (alternative heat sink combinations)
	YPb2 / Zr5Pb3 pebble/block fabrication and thermal cycling
	YPb2 / Zr5Pb3 EUROFER corrosion compatibility
	Advanced ceramics (e.g. Zerodur, Si, Al, Li oxide)
	SiC/SiC composites
	Beryllium / Berylium Alloy
	Vanadium alloys
	Nanostructure alloy
To be moved to "3D PRINTING / MANUFACTURING"	Functionally Graded Materials (FGMs) for transition between two materials with different properties
To be moved to "TESTING"	Irradiation of materials for neutron flux simulation
	Coolant media above 500 C and compatibility of coolant interface materials (synergies with next generation fission)
	TUNGSTEN CHARACTERIZATION
	Tungsten for Plasma Facing Components (PFC)
	Tungsten fibre-reinforced composites (Wf /W) for high T applications (PFC)
	Tungsten fibre-reinforced copper composites (Wf-Cu) for high T and high heat flux applications
	Tungsten self-passivating (oxidation resistant) based alloys for high temperature application
	Tungsten-based laminated semi-finished products for plates, pipes or foils

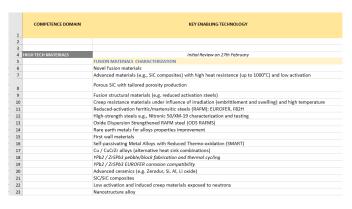


Innovation Procurement
Pre-Commercial Procurement

Industry concerns about bureaucracy and repetition of 'heavy' ITER style procedures and F4E culture

Steady State

Typ. 30+ contracts per year 30 M€/year ≈ 1M€ / 18-24 months duration


Pilot

Typ. 2 contracts (<2 M€ in total)
R&D-type Model Contract (simplified)

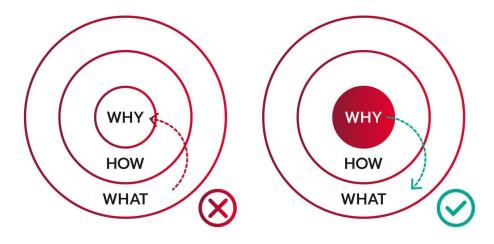
Steady State

Consolidated

Consolidated Tech Mapping

Critical Technologies Mapping (F4E expertise)

Sharing with external Stakeholders


Definition of assessment parameters and priorities

SUMMARY

in supporting European industry ambitions for accelerating fusion in making F4E a (great) Fusion Technology Hub / Cluster

Thank you for your attention

Follow us on:

www.f4e.europa.eu

www.twitter.com/fusionforenergy

www.youtube.com/fusionforenergy

www.linkedin.com/company/fusion-for-energy

www.flickr.com/photos/fusionforenergy